الحد النوني

يعتبر علم الرياضيات من العلوم الهامة حيث أنه قائم على كل من التركيب والنظام ويعتمد في قوانينه على الحساب الكمي والتفكير بالمنطق كما أنه اشتمل على التجريد ، ولعلم الرياضيات أهمية كبيرة في كل من الفيزياء والتكنولوجيا ، كما أن لها دور هام في التعاملات اليومية في كل من مجال الزراعة والتجارة والصناعة ، حيث يتم تطويرها بشكل دائم للحفاظ على أنشطة العالم .

المصادر الرياضية القديمة

تم معرفة علم الرياضيات في كل من مصر وبلاد ما وراء النهرين عن طريق الاعتماد على الكتب التي ألفت قديما ، ورغم قلة تلك المصادر في مصر إلا أنها تدل على أن ذلك العلم في مصر كان توجهه عميق وأولي وذلك عند المقارنة ببلاد ما وراء النهرين ، كما وجدت لوحات مصنوعة من الطين تدٓون علم الرياضيات في بلاد ما وراء النهرين ، والتي تدل على العلم الواسع بذلك المجال .

لكن لم يتم استنتاج أي نظام معرفي لذلك العلم بعد ذلك أو العمل على تطويره ، أما فيما يخص العصر الإسلامي فلم يتم الحفاظ على أغلب القوانين الخاصة بذلك العلم سوى ظهور بعض التراجم اللاتينية لتلك الفترة ، حيث أن أغلب القوانين الحالية الخاصة بعلم الرياضيات قد تم التطرق إليها في العصور القديمة عدا القليل منها لذا لا يستطيع أحد أن يقول أن الحقبة الإسلامية لم تتضمن تلك القوانين الرياضية .

قانون المتتالية

هي عبارة عن دالة يرمز لها بالرمز د وكذلك يرمز لمجموعتها الجزئية بالرمز ط أما في حالة معرفة مدى المجموعة الجزئية الخاصة بها فهي التي يرمز لها بالرمز ح .

ويرمز لها كهذا د(ن) هو الحد النوني للمتتالية أما ط فهو الذي يشتمل على عناصر وأجزاء حدود المتتالية ، وتنقسم المتتالية إلى قسمين هما: المتتالية المنتهية وهي عبارة عن د= {1,2,3, . . .م } ح والمتتالية الغير منتهية هي د : ط . ح .

ويتم معرفة التقدم الحسابي عن طريق الاعتماد على رقم ثابت يسمى المشترك د فعند معرفة التقدم الحسابي في هذا المثال 4,8,12,16 يتم حساب العدد المشترك والثابت في الزيادة التي تمت لتلك الأرقام ، حيث أن تلك الأرقام ازدادت عن طريق إضافة رقم أربعة لها بتسلل .

المتتالية الحسابية

ويتم حساب المتتالية عن طريق اتباع القانون الآتي ، { ح ن } هو عبارة عن متتالية حسابية ، وذلك في حالة وجود عدد ثابت د حيث أن ذلك العدد الثابت د = ح ن + 1- ح ن ، حيث أن ح ن لكل قيم ن ، أما د فهي أصل وأساس المتتالية ، فيتم معرفة الحد النوني عن طريق هذا القانون وهو : ح ن =أ +(ن-1) د ، حيث أن أ هو الحد الأول ود هو الثابت والأساس .

أما بالنسبة للأوساط الحسابية بين كل من أ وب هي الحدود بالمتتالية حيث أن أ هو الحد الأول وب الحد الأخير .

مثال على المتتالية الحسابية

هل المتتالية { ح ن } = {5,10,15,20,25…} حسابية أم أنها متتالية غير حسابية مع ذكر السبب ؟

الإجابة: المتتالية هنا حسابية وذلك لكون ح ن +1- ح ن = 5 لجميع قيم ن

المتتالية الهندسية

وفي ذلك القسم من أقسام المتتالية يتم معرفة المتتالية عن طريق هذا القانون ويتم القول بأن { ح ن } هي متتالية هندسية في حين وجود عدد ثابت ر حيث أن ر = ح ن +1 ÷ ح ن ، وذلك لكل قيم ن ، وتعتبر ر هي أساس وأصل المتتالية .

هناك بعض الخطوات التي يتم اتباعها في المتتالية الهندسية وهي أن الحد النوني للمتتالية الهندسية هو عبارة عن ح ن = أ رن – 1 حيث أن الذي يقصد ب الرمز أ هنا هو الحد الأول للمتتالية ويقصد بالرمز ر أساس المتتالية .

ومن الخطوات التي يجب معرفتها عند التعرض إلي المتتالية الهندسية أن الأوساط المتواجدة بين كل من أ و ب هي الحدود لتلك المتتالية حيث أن أ هو الحد الأول و ب الحد الأخير بالمتتالية .

أما إذا كانت الأعداد س ص ع في توالي هندسي يسمى ص هنا الوسط الهندسي .

مثال على المتتالية الهندسية

هل المتتالية التالية هندسية أم لا 12,6,3

الإجابة ، المتتالية هنا هندسية وذلك لكون ح ن +1÷ ح ن = 2 لكل قيم ن بالمتتالية .

م/ منى برعي

الحمد لله حمدا كما ينبغي لجلال وجهه وعظيم سلطانه

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *

زر الذهاب إلى الأعلى